Evaluating the Neural Network Ensemble Method in Predicting Soil Moisture in Agricultural Fields

نویسندگان

چکیده

Soil is an important element in the agricultural domain because it serves as media that bridges water consumption and supply processes. In this study, a neural network ensemble (NNE) method was employed to predict soil moisture eliminate effects of random initial parameters (NN) on model accuracy. The constructed NNE predicts daily root zone continuously for whole crop growing season processes were separately modeled. profile divided into multiple layers modeled separately. Weather data (including air temperature, humidity, wind speed, net radiation, precipitation), rooting depth, hesternal each layer used input. A calibrated quality maize (Zea mays L.) generate training evaluation data. result showed with 100 randomly initialized NN models, achieved average R2 0.96 nRMSE 5.93%, suggesting learned dynamics well sufficiently improved robustness prediction high

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture

Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture. Moreover, the relationship between brightness temperature, soil moisture and the factor...

متن کامل

Evaluating uncertainty in estimates of soil moisture memory with a reverse ensemble approach

Soil moisture memory is a key component of seasonal predictability. However, uncertainty in current memory estimates is not clear and it is not obvious to what extent these are dependent on model uncertainties. To address this question, we perform a global sensitivity analysis of memory to key hydraulic parameters, using an uncoupled version of the H-TESSEL land surface model. Results show sign...

متن کامل

The International Soil Moisture Network - An observational network for soil moisture product validations

In situ soil moisture measurements are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. On a worldwide basis the number of meteorological networks measuring soil moisture is still limited and their data lack standardization of technique and protocol. In response to this, the International Soil Moisture Network (ISMN) was initiated to se...

متن کامل

The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, longterm time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2021

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy11081521